# 激光写光电子学进展

# 开环光纤陀螺大动态范围正交解调算法的影响因素

李佳<sup>1,2</sup>, 孟晨<sup>1,2</sup>, 苏亚<sup>1,2</sup>, 吴胜保<sup>1,2</sup>, 郝鹏<sup>1,2\*</sup>, 姚晓天<sup>1,2</sup> <sup>1</sup>河北大学物理科学与技术学院光信息技术创新中心, 河北 保定 071002; <sup>2</sup>河北省光学感知技术创新中心, 河北 保定 071002

**摘要** 研究了一种可实现开环光纤陀螺大动态范围测量的正交解调算法。对干涉信号每周期间隔 $\pi/6$ 进行直接采样,得到12个离散点进行相位解调,并利用条纹计数方法实现了开环光纤陀螺的大动态范围测量。详细分析了开环光纤陀螺系统相位调制器驱动信号、干涉信号采样相位误差与正交解调算法解调误差之间的关系。利用抽取的12个采样点构建调制深度误差 $E_{\rm M}$ 和调制初始相位误差 $E_{\rm W}$ 评价参数,并对正弦调制信号参数进行反馈控制,保证解调精度。结果表明,为使开环光纤陀螺的相位解调误差在±10<sup>-6</sup> rad(标度因数为1.134 s,陀螺输出角速度误差为±0.18(°)/h)内,正弦调制信号的调制频率 $f_c$ 误差需小于±0.072%(97.31 kHz),电压峰峰值 $V_{\pi}$ 误差需小于±0.1%(3.654 V),调制初始相位误差需小于±16.226 mV,调制深度误差需小于±12.483 mV,数字采样相位误差需小于5.625×10<sup>-4</sup> rad。

关键词 光纤光学; 开环光纤陀螺; 调制解调; 动态范围; 解调误差 中图分类号 TN929.11 **文献标志码** A

DOI: 10.3788/LOP202259.1706004

# Influencing Factors of Open-Loop Fiber Optic Gyroscope with Large Dynamic Range Quadrature Demodulation Algorithm

Li Jia<sup>1,2</sup>, Meng Chen<sup>1,2</sup>, Su Ya<sup>1,2</sup>, Wu Shengbao<sup>1,2</sup>, Hao Peng<sup>1,2\*</sup>, Yao X.Steve<sup>1,2</sup> <sup>1</sup>Photonics Information Innovation Center, College of Physics and Technology, Hebei University, Baoding 071002, Hebei, China;

<sup>2</sup>Hebei Provincial Center for Optical Sensing Innovations, Baoding 071002, Hebei, China

**Abstract** A quadrature demodulation algorithm for large dynamic range measurement of open-loop fiber optic gyroscope is studied in this paper. The interference signal is directly sampled every  $\pi/6$  every cycle, and 12 sampling points are obtained for phase demodulation. The large dynamic range measurement of open-loop fiber optic gyroscope is realized by using fringe counting method. The relationship between the sampling phase error of phase modulator driving signal and interference signal of open-loop fiber optic gyroscope system and the demodulation error of quadrature demodulation algorithm is analyzed in detail. The evaluation parameters of modulation depth error  $E_{\rm M}$  and modulation initial phase error  $E_{\rm w}$  are constructed by using the extracted 12 sampling points, and the sinusoidal modulation signal parameters are feedback controlled to ensure the demodulation accuracy. The results show that in order to make the phase demodulation error of open-loop fiber optic gyroscope within  $\pm 10^{-6}$  rad (scale factor is 1.134 s, gyro output angular velocity error  $\pm 0.18$  (°)/h), the error of modulation frequency  $f_{\rm e}$  of sinusoidal modulation signal should be less than  $\pm 0.072\%$  (97.31 kHz), and the error of voltage peak to peak  $V_{\pi}$  should be less than  $\pm 0.1\%$  (3.654 V), the modulation initial phase error should be less than  $\pm 12.483$  mV, and the digital sampling phase error should be less than  $5.625 \times 10^{-4}$  rad.

Key words fiber optics; open-loop fiber optic gyroscope; modulation and demodulation; dynamic range; demodulation error

1 引 言

干涉型光纤陀螺是一种基于Sagnac效应正反向

传输的双波束环形干涉仪,旋转角速度的变化会通过 光纤环这一敏感元件使光纤中传输光的相位发生变 化,进而测量惯性空间的转动角速度。近年来,光纤陀

通信作者: \*haopeng@hbu. edu. cn

研究论文

收稿日期: 2021-12-04; 修回日期: 2022-01-07; 录用日期: 2022-01-11

**基金项目**:国家自然科学基金(12004092)、河北省创新能力提升计划(20542201D)、河北省自然科学基金(F2020201041)、河北省高等学校科学技术研究项目(QN2019035)、河北大学高层次人才科研启动项目(801260201243)

#### 研究论文

# 螺在导弹潜艇导航、卫星姿态测量及定位、高精度机器 等间隔(π/ 人控制等方面有着广泛的应用<sup>[1-5]</sup>,智能制造、智能驾 后,用数字 驶领域的快速发展,使人们对制造高性能、低成本光纤 计数原理

人控制等方面有着广泛的应用<sup>[18]</sup>,智能制造、智能驾驶领域的快速发展,使人们对制造高性能、低成本光纤 陀螺的技术需求越来越急迫。开环光纤陀螺直接从 Sagnac干涉仪输出信号中提取转速信号,不需要进行 任何反馈,成本低廉,目前主要用于低精度光纤陀螺应 用场景,在民用领域也有着广阔的市场前景。

对于开环光纤陀螺,干涉信号的相位解调方法包括相敏检测法、同步外差法、正交解调算法等<sup>[6-10]</sup>。相敏检测法有模拟相敏检测法和数字相敏检测法两种, 其中:模拟相敏检测法利用模拟电路相敏检测提取次 谐波分量,电路简单且易于实现,但动态范围小<sup>[11]</sup>;数 字相敏检测法通过锁相滤波方式提取干涉信号中的 一、二、四次谐波分量进行解调,同时对调制深度进行 监测并反馈,以保证调制深度不变,提高了信号的信噪 比,但成本高、数字电路复杂<sup>[12-16]</sup>。同步外差法是对干 涉信号进行选通,将相位信息转化为低频信号的相位, 进而得到相移量的大小,解调不受光强变化和电路增 益的影响,动态范围大,标度因数线性度好,但电路复 杂,实现较为困难<sup>[17]</sup>。

本文提出了一种成本低、动态范围大的正交解调算 法,可对光纤陀螺输出信号进行直接数字采样。首先, 等间隔( $\pi/6$ )得到12个采样点后进行相位解调<sup>[18:19]</sup>。然后,用数字信号处理器(DSP)作为核心器件,基于条纹计数原理实现大动态范围相位解调。大动态范围正交解调算法先进行直接采样,得到开环光纤陀螺正弦调制时输出信号相位的正弦值和余弦值后再进行相位解调,相位解调精度与光纤陀螺中相位调制器调制信号的调制频率、初始相位以及信号电压峰峰值等参数密切相关。因此,仿真分析了相位调制器的输入调制信号频率、信号电压峰峰值以及数字采样相位误差对解调误差的影响。为实现调制初始相位和调制深度的精确控制,引入调制初始相位误差( $E_w$ )和调制深度误差( $E_m$ )这两个评价参数,通过负反馈对调制初始相位和调制深度的 误差进行实时控制。该算法为低成本、大动态范围开环光纤陀螺提供了一个良好的数字解调方案。

第 59 卷 第 17 期/2022 年 9 月/激光与光电子学进展

## 2 基本原理

开环光纤陀螺的原理如图1所示。超辐射发光二极管(SLD)光源发出的光经过耦合器1进入起偏器选择偏振方向,再进入耦合器2分成两束传播方向相反的光,经过光纤环后在耦合器2处进行干涉。光纤环的一臂加入压电陶瓷(PZT)相位调制器产生正弦相位调制。



图1 开环光纤陀螺仪的原理

Fig. 1 Principle of the open-loop fiber optic gyroscope

光强由光电探测器接收并转换为电信号,可表示为  $V(t) = V_{dc} + V_{ac} \cos \left[ \varphi_s + M \sin \left( \omega_m t + W \right) \right], (1)$ 式中: $V_{dc}$ 为光电探测器输出的直流信号; $V_{ac}$ 为光电探 测器输出的干涉交流信号的幅度,与光强成正比; $\varphi_s$ 为 转动产生的Sagnac相移;M为调制深度; $\omega_m$ 为正弦相 位调制角频率;W为调制初始相位。式(1)还可以表 示为

 $V(t) = V_{dc} + V_{ac} \Big[ \cos \varphi_s E(t) - \sin \varphi_s O(t) \Big], \quad (2)$  $\vec{x} \oplus E(t) = \cos \Big[ M \sin \big( \omega_m t + W \big) \Big], \quad O(t) = \sin \Big[ M \times in \big( \omega_m t + W \big) \Big], \quad B = E(t + \pi/\omega_m) = E(t), \quad O(t + \pi/\omega_m) = -O(t), \quad \& t \in \mathbb{R}$  直流分量和正交分量,即偶分量E(t)和奇分量O(t)。 对于不同采样时刻的输出电信号:两个间隔 $\pi/\omega_m$ 的采 样点相加可以消除奇分量,得到关于相移量 $\varphi_s$ 的余弦 项偶分量;两个间隔 $\pi/\omega_m$ 的采样点相减可以消除偶分 量,得到关于相移量 $\varphi_s$ 的正弦项奇分量,且这种正交 特性与调制深度和调制初始相位无关。

基于上述特性,对开环光纤陀螺光电探测器的输出 电信号进行数字离散采样,在每个正弦信号调制周期  $(2\pi)$ 内抽取12个采样点,第一个采样点为 $\omega_m t = 2k\pi, k = 0, 1, \cdots$ ,对电信号进行等相位间隔 $(\pi/6)$ 采样后,每个周期得到12个点,分别为 $S_0, \cdots, S_{110}$ 利用点 $S_0, S_3, S_6, S_9$ 计算出含有相移量 $\varphi_s$ 的余弦项 $R_c^{[17]}$ ,可表示为

$$R_{\rm C} = (S_0 + S_6) - (S_3 + S_9) =$$
$$2V_{\rm ac} \cos \varphi_{\rm s} \left[ E\left(\frac{0\pi}{6}\right) - E\left(\frac{3\pi}{6}\right) \right] =$$

 $2V_{ac}\cos\varphi_{s}\left[\cos(M\sin W) - \cos(M\cos W)\right], (3)$ 利用点  $S_{1}$ 、 $S_{5}$ 、 $S_{7}$ 、 $S_{11}$ 计算出含有相移量  $\varphi_{s}$ 的正弦项  $R_{s}^{[17]}$ ,可表示为

$$R_{\rm s} = \left(S_7 - S_1\right) + \left(S_{11} - S_5\right) =$$

$$2V_{\rm ac} \sin \varphi_{\rm s} \left[O\left(\frac{\pi}{6}\right) + O\left(\frac{5\pi}{6}\right)\right] =$$

$$2V_{\rm ac} \sin \varphi_{\rm s} \left\{\sin\left[M\sin\left(\frac{\pi}{6} + W\right)\right] + \sin\left[M\sin\left(\frac{\pi}{6} - W\right)\right]\right\}_{\circ}$$
(4)

当调制深度 $M = \pi$ 、调制初始相位W = 0时,  $\cos(M\sin W) - \cos(M\cos W)$ 和  $\sin[M\sin(\pi/6 + W)] + \sin[M\sin(\pi/6 - W)]$ 可取得最大值,均为2,  $R_c \pi R_s 中相移量 \varphi_s 正弦项增益和余弦项增益相等且$  $最大,此时对应的<math>R_c \pi R_s$ 可表示为

 $R_{\rm c} = 4 V_{\rm ac} \cos \varphi_{\rm s} \quad , \quad R_{\rm s} = 4 V_{\rm ac} \sin \varphi_{\rm so} \tag{5}$ 

通过 $R_c$ 和 $R_s$ 解调出转动产生的Sagnac相移 $\varphi_s$ , 可表示为

$$\varphi_{\rm s} = \arctan\left(R_{\rm S}/R_{\rm C}\right)_{\circ} \tag{6}$$

若直角坐标系中存在某一点 $A(R_c, R_s)$ ,则相移 $\varphi_s$ 可表示为原点O到点 $A(R_c, R_s)$ 的连线与X轴的夹角, 如图 2 所示。将直角坐标系分成 8 个象限,通过判断  $R_c$ 、 $R_s$ 的正负 $R_c$ 与 $R_s$ 绝对值之差( $D=|R_c|-|R_s|$ )的正 负确定点A所在象限。如:当 $R_c$ 、 $R_s$ 、D均为正值时, 相移 $\varphi_s$ 位于第1象限( $0\sim\pi/4$ )内; $R_c$ 、 $R_s$ 为负值且D为 正值时,相移 $\varphi_s$ 位于第4象限( $\pi\sim5\pi/4$ )内,从而实现 相移 $\varphi_s$ 在 $0\sim2\pi$ 范围内的解调。





当光纤陀螺仪输出角速度产生的Sagnac相移大 于等于一个周期时,无法进行准确判断和解调。为了

#### 第 59卷 第 17 期/2022 年 9 月/激光与光电子学进展

进一步扩大本算法的相位解调范围,在光纤陀螺前后 两次解调输出相移量的差小于 $\pi$ 时,采用条纹计数法 进行相位解缠。设置参量F为条纹计数器,其初值为 0,光纤陀螺仪在某一时刻输出的相移量为 $P_i$ ,前一时 刻陀螺仪输出的相移量为 $P_{i-1}$ , $i=1,2,\cdots$ ,两次输出相 移量的差 $D_i = P_i - P_{i-1}$ :当 $D_i < 0$ , $\pi + D_i < 0$ 时,F =F+1;当 $D_i \ge 0$ , $\pi - D_i < 0$ 时,F = F - 1,此时,光纤陀 螺的输出相位角度可表示为 $P'_i = P_i + F \times 2\pi$ ,从而实现 输入旋转角速度产生相位超过 $2\pi$ 范围的解调范围。 该算法有效的前提是前后两次解调输出的相移量差小 于 $\pi$ ,在输入旋转角速度较大时,需提高调制频率。通 过条纹计数方法可将12点正交解调算法的相位解调 范围扩展至 $2\pi$ 范围外,且具有简单、易于实现的优点。

# 3 解调精度影响因素的仿真实验

#### 3.1 调制信号参数对解调精度的影响

在开环光纤陀螺中,用正弦信号驱动相位调制器, 相位调制器产生的调制相位 $\Delta \varphi_{m}(t)$ 可表示为

$$\Delta \varphi_{\rm m}(t) = M \sin\left(\omega_{\rm m} t + W\right) = \frac{\pi}{V_{\pi}} V_{\rm PP} \sin\left(\frac{\pi}{2} \cdot \frac{f_{\rm m}}{f_{\rm e}}\right) \sin\left(\omega_{\rm m} t - \omega_{\rm m} \frac{\tau}{2} + \varphi_0 + \frac{\pi}{2}\right), (7)$$

式中: $f_m$ 为调制频率; $\varphi_0$ 为调制初始相位; $V_\pi$ 为相位调 制器半波电压; $V_{PP}$ 为调制信号电压峰峰值; $\tau$ 为光纤陀 螺光纤环的渡越时间; $f_e$ 为光纤陀螺本征频率; $f_e$ =  $1/(2\tau)$ 。由式(3)和式(4)可知,对于12点直接采样正 交解调算法,只有在调制深度M为 $\pi$ ,调制初始相位W为0时,正弦项 $R_s$ 和余弦项 $R_c$ 才能获得最大值2,通过 式(6)可直接获得相移量 $\varphi_s$ ,解调得到的相移量与相位 调制器输入调制信号的参数无关。调制深度M和调 制初始相位W由相位调制器调制信号的频率、相位、 电压峰峰值决定,可表示为

$$W = \varphi_0 + \frac{\pi}{2} \left( 1 - \frac{f_{\rm m}}{f_{\rm e}} \right), M = \frac{\pi}{V_{\pi}} V_{\rm PP} \sin\left(\frac{\pi}{2} \cdot \frac{f_{\rm m}}{f_{\rm e}}\right)_{\circ} (8)$$

当调制深度M不为 $\pi$ ,调制初始相位W偏离0时, 解调得到的相移量受到相位调制器输入调制信号的影 响。因此,对于12点正交解调算法的大动态范围开环 光纤陀螺,需要精确配置相位调制器调制信号的调制 频率、调制信号的初始相位以及调制信号电压峰峰值, 以保证调制深度 $M = \pi$ 和调制初始相位W = 0。调制 深度M由相位调制器调制信号电压峰峰值、相位调制 器的调制频率决定。调制频率误差 $\Delta f_m$ 、调制电压峰 峰值误差 $\Delta V_{PP}$ 与调制深度误差之间的关系可表示为

$$\Delta M = \frac{\pi}{V_{\pi}} \sin\left(\frac{\pi}{2} \cdot \frac{f_{m}}{f_{e}}\right) \Delta V_{\rm PP} + \frac{\pi}{V_{\pi}} \cdot \frac{\pi V_{\rm PP}}{2f_{e}} \cos\left(\frac{\pi}{2} \cdot \frac{f_{m}}{f_{e}}\right) \Delta f_{\rm mo}$$
(9)

调制初始相位 W 由相位调制器调制频率和调制 初始相位决定,调制初始相位误差ΔW、相位调制器调

第 59卷 第 17 期/2022 年 9 月/激光与光电子学进展

制频率误差 $\Delta f_m$ 与相位调制器调制信号的初始相位误 差 $\Delta \varphi_0$ 之间的关系可表示为

$$\Delta W = \Delta \varphi_0 - \frac{\pi}{2f_e} \Delta f_{\rm mo} \tag{10}$$

可以发现,调制初始相位 W由相位调制器调制信号的初始相位  $\varphi_0$ 和相位调制器调制频率 $f_m$ 决定。基于 12点正交解调算法的开环光纤陀螺对输出信号进行离散数据采集,可通过同步触发控制方式调整触发延时 使调制初始相位  $\varphi_0 = 0$ ,如调制频率 $f_m = 97.31$  kHz、触发延时的时间控制精度为 100 ps 时,调制初始相位 W 的误差  $\Delta \varphi_0 \leq 6.11 \times 10^{-5}$  rad。在相位调制器的调制初始相位确定时,通过控制相位调制器调制信号的频率 $f_m$ 和调制电压峰峰值  $V_{\rm PP}$ ,可以实现对调制深度 M 的误差控制。

为了降低相位调制器调制信号对光纤陀螺相位解 调测量结果的影响,引入调制初始相位误差 E<sub>w</sub>和调制 深度误差 E<sub>M</sub>这两个评价参数,以实时监测调制初始相 位和调制深度。其中,调制初始相位误差 E<sub>w</sub>分为偶调 制初始相位误差 E<sub>cw</sub>和奇调制初始相位误差 E<sub>sw</sub>,调制 深度误差 E<sub>M</sub>分为偶调制深度误差 E<sub>cm</sub>和奇调制深度 误差 E<sub>sm</sub>,利用该误差信号对相位调制器输出的调制 信号进行反馈控制,将调制误差控制在某一范围内。 调制误差<sup>[17]</sup>可表示为

$$E_{\rm CW} = (S_7 + S_1) - (S_{11} + S_5) = 4V_{\rm ac} \sqrt{\frac{3}{2}} MW \cos \varphi_{\rm s}$$

$$E_{\rm SW} = -(S_6 - S_0) = 2V_{\rm ac} MW \sin \varphi_{\rm s}$$

$$E_{\rm CM} = (S_7 + S_1) - (S_6 + S_0) + (S_{11} + S_5) - (S_9 + S_3) = 2V_{\rm ac} (\pi - M) \cos \varphi_{\rm s}$$

$$E_{\rm SM} = (S_9 - S_3) = 2V_{\rm ac} (\pi - M) \sin \varphi_{\rm so} \qquad (11)$$

当光纤陀螺测量的角速度不同时,根据式(3)、 式(4)计算的 $R_c$ 和 $R_s$ 也不同, $A(R_c,R_s)$ 坐标处于直角 坐标系中的不同位置。根据点A在直角坐标系中的位 置选择式(11)中对应的调制初始相位和调制深度误差 公式进行计算,即在图 2中:光纤陀螺输出相移量对应 点A坐标在图 2中的0、3、4、7位置处使用 $E_{cM}$ 和 $E_{cW}$ 分 别计算调制深度误差 $E_M$ 和调制初始相位误差 $E_W$ ;光 纤陀螺输出相移量对应点A坐标在图 2中的1、2、5、6 位置处使用 $E_{SM}$ 和 $E_{SW}$ 分别计算调制深度误差 $E_M$ 和调 制初始相位误差 $E_W$ 。

利用调制初始相位误差 $E_w$ 和调制深度误差 $E_M$ 对相位调制器的输出调制频率 $f_m$ 和电压峰峰值 $V_{PP}$ 进行反馈控制,以保证12点正交解调算法开环光纤陀螺的解调精度,具体流程如图3所示。首先,相位调制器由



图 3  $f_m$ 和  $V_{PP}$ 的反馈控制流程图 Fig. 3 Feedback control flow chart of  $f_m$  and  $V_{PP}$ 

#### 研究论文

初始正弦调制信号  $V_{\rm m}(t) = \sin(2\pi f_{\rm m}t) V_{\rm PP}/2$  驱动相 位调制器,光纤陀螺输出信号12点离散数字采样获得 的每个调制周期的 $S_0, \dots, S_1$ 数据,根据式(3)、式(4) 计算 $R_c$ 和 $R_s$ ,同时获得 $A(R_c,R_s)$ 在直角坐标系中的 位置。然后,根据式(11)计算调制初始相位误差Ew  $(E_{\rm CW}$ 或 $E_{\rm SW}$ )和调制深度误差 $E_{\rm M}(E_{\rm CM}$ 或 $E_{\rm SM})。其次,$ 将上述误差值与解调误差控制参数  $\epsilon_1$ 和  $\epsilon_2$ 进行对比, 先进行调制频率的反馈控制:若调制初始相位误差  $E_{\rm w} > \epsilon_1$ ,增大调制频率  $f_{\rm w}$ ;若调制初始相位误差  $E_{\rm w} <$  $-\epsilon_1$ ,减小调制频率 $f_m$ 。之后,进行调制电压峰峰值 $V_{PP}$ 的控制:若调制深度误差 $E_{\rm M} > \epsilon_2$ ,增大调制电压峰峰 值  $V_{\rm PP}$ ;若调制初始相位误差  $E_{\rm M} < -\epsilon_2$ ,减小调制电压 峰峰值 V<sub>PP</sub>。循环上述操作,最终实现调制频率 f<sub>m</sub>和 电压峰峰值 Vpp的调控,使调制初始相位误差的绝对 值控制在 ε<sub>1</sub>内,通过调制电压峰峰值 V<sub>PP</sub>使调制深度 误差的绝对值控制在ε,内。

为了准确给出解调误差控制参数  $\epsilon_1$ 和  $\epsilon_2$ , 仿真分析了解调误差评价参数  $E_w$ 和  $E_M$ 与解调相位误差之间的关系。 假设开环光纤陀螺的本征频率  $f_e$ = 97.31 kHz, 相位调制器半波电压  $V_{\pi}$ =3.654 V, 被测量角速度通过光纤环引入光纤陀螺仪的相移量  $\varphi_s$ , 对于某一调制初始相位误差  $\epsilon_1$ 和调制深度误差  $\epsilon_{21}$ , 根据式(11)计算出对应的正弦信号调制初始相位 W和调制深度 M范围,将 W和M代入式(1)得到光纤陀

#### 第 59 卷 第 17 期/2022 年 9 月/激光与光电子学进展

螺输出的干涉信号,对该干涉信号进行每周期12点离 散采样,得到 $S_0, \cdots, S_{11}$ 。然后由式(3)、式(4)计算出  $R_{\rm c}$ 和 $R_{\rm s}$ ,判断点 $A(R_{\rm c},R_{\rm s})$ 在图2中直角坐标系上的位 置并选取对应的解调公式计算 φ',则解调相位误差可 表示为 $\varphi'_{s} - \varphi_{s}$ 。当Sagnac 相移量 $\varphi_{s}$ 为0、 $\pi/4$ 、 $5\pi/3$ 、  $7\pi/6$ 时, 仿真了调制初始相位误差  $E_w$ 和调制深度误 中,Z轴为解调相位误差 $\varphi'_{s} - \varphi_{s},X$ 轴为调制初始相位 误差Ew,Y轴为调制深度误差EM。当调制初始相位误 差 E<sub>w</sub>=0 且 调制 深 度 误 差 E<sub>w</sub>=0 时, 调制 初 始 相 位 W=0且调制深度 $M=\pi$ ,解调相位误差为0。可以发 现,当 $\varphi_s = 0$ 时,调制初始相位误差 $E_w$ 和调制深度 误差E<sub>M</sub>对解调相位误差的影响较小,原因是解调相位  $\varphi'_{s}$ 等于 $R_{s}$ 与 $R_{c}$ 比值的反正切值,由式(4)可知,引入 陀螺仪的相移量趋近0时, $R_s$ 趋近0, $E_w$ 和 $E_M$ 在 $\varphi_s$ 趋 近于0时对解调相位误差的影响很小。由式(11)可 知, $E_{\rm w}$ 和 $E_{\rm M}$ 与相移量 $\varphi_{\rm s}$ 和 $V_{\rm ac}$ 相关联,当相移量 $\varphi_{\rm s}$ 趋 近 $0,\pi/2,\pi,3\pi/2,2\pi$ 时,相移量 $\varphi_s$ 的余弦项 cos $\varphi_s$ 或 正弦项  $\sin \varphi_s$  趋近 0,  $E_w$  和  $E_M$  对解调相位误差的影响 较小。数值仿真结果表明,当V<sub>a</sub>=2.57 V时,为将解 调相位误差控制在±10<sup>-6</sup> rad 内,调制初始相位误差  $E_{\rm w}$ 应控制在±16.226 mV( $\epsilon_1$  < 16.226 mV)内,调制 深度误差 E<sub>M</sub> 应控制 在 ±12.483 mV  $(\epsilon_2 < 12.483 \,\mathrm{mV})$ 内。



图 4 调制误差与解调误差的关系。(a)  $\varphi_s = 0$ ; (b)  $\varphi_s = \pi/4$ ; (c)  $\varphi_s = 7\pi/6$ ; (d)  $\varphi_s = 5\pi/3$ Fig. 4 Relationship between modulation error and demodulation error. (a)  $\varphi_s = 0$ ; (b)  $\varphi_s = \pi/4$ ; (c)  $\varphi_s = 7\pi/6$ ; (d)  $\varphi_s = 5\pi/3$ 

#### 研究论文

为了分析调制信号调制频率 $f_m$ 和调制电压峰峰值  $V_{PP}$ 对本算法解调误差的影响,对于某一调制信号调制 频率 $f_m$ 和调制电压峰峰值 $V_{PP}$ ,根据式(8)计算得到对 应的调制初始相位 W和调制深度 M,并将其代入 式(1)得到对应的干涉信号,然后利用正交解调算法得 到 $\varphi'_{so}$  当 Sagnac 相移量 $\varphi_s$ 为 $0,\pi/4,5\pi/3,7\pi/6$ 时仿 真得到的解调相位误差如图5所示。其中,Z轴为解调 相位误差 $\varphi'_s - \varphi_s,X$ 轴为调制频率偏移光纤环的本征 频率 $\Delta f_m (\Delta f_m = f_m - f_e)$ 误差,Y轴为电压峰峰值偏离 半波电压 $\Delta V_{PP} (\Delta V_{PP} = V_{PP} - V_{\pi})$ 误差。当相位调制 器 驱 动 频 率 等于光 纤 陀 螺 本 征 频 率 ( $f_m = f_e =$ 97.31 kHz)、电压峰峰值等于半波电压( $V_{PP} = V_{\pi} =$ 

#### 第 59 卷 第 17 期/2022 年 9 月/激光与光电子学进展

3.654 V)时,调制初始相位 W=0,调制深度  $M=\pi$ ,解 调相位误差为0。可以发现,在 $\varphi_s=0$ 时,频率偏移  $\Delta f_m$ 和电压峰峰值偏移 $\Delta V_{PP}$ 对解调相位误差的影响很 小,原因是解调相位 $\varphi'_s$ 等于 $R_s$ 与 $R_c$ 比值的反正切值, 由式(4)可知,通过光纤环引入陀螺仪的相移量趋近0 时,相移量的正弦值趋近0, $E_w$ 和 $E_M$ 在 $\varphi_s$ 趋近于0时 对解调相位误差的影响很小。数值仿真结果表明,为 了保证解调相位误差控制在±10<sup>-6</sup> rad(标度因数为 1.134 s,光纤陀螺角速度误差为±0.1819 (°)/h)内, 频率偏移量 $\Delta f_m$ 应控制在±70 Hz, $f_e$ =97.31 kHz,  $\Delta f_m = \pm 0.0719\% f_e$ ,电压峰峰值 $\Delta V_{PP}$ 应控制在±4 mV 内,即 $V_\pi$ =3.654 V、 $\Delta V_{PP} = \pm 0.11\% V_{\pi}$ 。



图 5 频率偏移  $\Delta f_{\rm m}$ 和电压峰峰值偏移  $\Delta V_{\rm PP}$  对解调精度的影响。(a)  $\varphi_{\rm s} = 0$ ; (b)  $\varphi_{\rm s} = \pi/4$ ; (c)  $\varphi_{\rm s} = 7\pi/6$ ; (d)  $\varphi_{\rm s} = 5\pi/3$ Fig. 5 Effect of frequency offset  $\Delta f_{\rm m}$  and voltage peak to peak offset  $\Delta V_{\rm PP}$  on demodulation accuracy. (a)  $\varphi_{\rm s} = 0$ ; (b)  $\varphi_{\rm s} = \pi/4$ ; (c)  $\varphi_{\rm s} = 7\pi/6$ ; (d)  $\varphi_{\rm s} = 5\pi/3$ 

#### 3.2 采样相位误差对相位解调精度的影响

12点正交解调算法基于对干涉信号数字离散采 样获得间隔为 $\pi/6$ 的12点离散信号进行相位解调,采 样时钟信号的时间抖动 $\Delta_{jitter}$ 产生的采样相位误差为  $\omega_m \Delta_{jitter}$ 。正交解调算法进行相位解调时,含有相移量  $\varphi_s$ 的余弦项 $R_c$ 和正弦项 $R_s$ 可表示为

$$R_{c} = 2V_{ac} \cos \varphi_{s} \left[ E \left( \frac{0\pi}{6} + \omega_{m} \Delta_{jitter} \right) - E \left( \frac{3\pi}{6} + \omega_{m} \Delta_{jitter} \right) \right]$$

$$R_{s} = 2V_{ac} \sin \varphi_{s} \left[ O \left( \frac{\pi}{6} + \omega_{m} \Delta_{jitter} \right) + O \left( \frac{5\pi}{6} + \omega_{m} \Delta_{jitter} \right) \right]^{\circ}$$

$$(12)$$

采样相位误差导致含有相移量 *φ*<sub>s</sub>的余弦项 *R*<sub>c</sub>和 正弦项 *R*<sub>s</sub>产生误差,根据 *R*<sub>c</sub>和 *R*<sub>s</sub>解调时会产生相位 解调误差,根据误差传递公式推导的解调相位标准差 *S*可表示为

$$S = \frac{1}{\overline{R_{s}}^{2} + \overline{R_{c}}^{2}} \sqrt{\overline{R_{c}}^{2}} \sigma_{R_{s}}^{2} + \overline{R_{s}}^{2} \sigma_{R_{c}}^{2}, \qquad (13)$$

式中: $\overline{R_s}$ 为 $R_s$ 的平均值; $\overline{R_c}$ 为 $R_c$ 的平均值; $\sigma_{R_s}$ 为 $R_s$ 的标准差; $\sigma_{R_c}$ 为 $R_c$ 的标准差。根据式(3)、式(4)和式(11)可知,采样相位误差导致的解调相位误差与干涉信号的交流项幅值 $V_{ac}$ 和相移量 $\varphi_s$ 有关,在 $V_{ac}=2.57$  V

#### <mark>第 59 卷 第 17</mark> 期/2022 年 9 月/激光与光电子学进展

#### 研究论文

时,仿真得到的采样相位误差在相移量 $\varphi_s$ 为0~2 $\pi$ 范 围内产生的解调相位误差如图6所示。其中,X轴为 相移量 $\varphi_s$ ,Y轴为采样相位误差的标准差,Z轴为解调 相位误差的标准差。可以发现,当输入陀螺仪的旋转 角速度产生的相位为0、 $\pi/2$ 、 $\pi$ 、 $3\pi/2$ 、 $2\pi$ 时,采样相位 误差对解调相位的标准差影响较小。采样相位误差一 定的情况下,当相移量为0~2 $\pi$ 时,解调相位误差的标 准差为周期性变化;当相移量为0~ $\pi/2$ 时,解调相位 误差的标准差先增加后减小。结果表明,为了使解调 相位的标准差控制在10<sup>-6</sup> rad内,需将采样相位误差



图 6 采样相位误差对解调相位标准差 S 的影响 Fig. 6 Effects of sampling phase error on demodulation phase standard deviation S

## 4 结 论

研究了一种实现开环光纤陀螺大动态范围解调的 正交解调算法。利用该解调算法,对光纤陀螺输出的 干涉信号每周期内间隔π/6进行12点直接采样,通过 条纹计数可实现相位超过2π范围的相位测量。解调 算法实现过程中,光纤陀螺中相位调制器的调制参数 将直接影响算法的解调精度,为了使开环光纤陀螺的 相位解调误差在10<sup>-6</sup> rad(标度因数为1.134 s,光纤陀 螺输出角速度误差±0.1819(°)/h)内,正弦调制信号 调制频率误差应小于±0.072%,调制信号峰峰值电压 应小于±0.1%(±4 mV,相位调制器半波电压  $V_{\pi}$ = 3.654 V), 数字采样相位误差应控制在5.625× 10<sup>-4</sup> rad(采样时钟抖动的标准差 920 ps)内。在光纤 陀螺输出干涉信号交流部分幅值 V<sub>ac</sub>=2.57 V时,调制 相位反馈误差 Ew应小于±16.226 mV,调制深度反馈 误差 E<sub>M</sub>应小于±12.483 mV 就能将解调相位的标准 差控制在10<sup>-6</sup> rad 以内。

#### 参考文献

[1] 尚克军, 雷明, 李豪伟, 等. 集成化光纤陀螺设计、制造及未来发展[J]. 中国惯性技术学报, 2021, 29(4): 502-509.
 Shang K J, Lei M, Li H W, et al. Design,

manufacturing and future development of the integrated fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2021, 29(4): 502-509.

- [2] Yao X S, Xuan H F, Chen X J, et al. Polarimetry fiber optic gyroscope[J]. Optics Express, 2019, 27(14): 19984-19995.
- [3] 冯小勇,王前学,李辉芬,等.基于光纤陀螺捷联惯导的载体位姿精密测量[J].光学学报,2016,36(10):1012001.

Feng X Y, Wang Q X, Li H F, et al. Precise measurement of carrier position and attitude based on fiber optic gyroscope strap-down inertial navigation system [J]. Acta Optica Sinica, 2016, 36(10): 1012001.

- [4] 杨远洪,杨福铃,陆林,等.干涉型光子晶体光纤陀螺 技术研究[J].光学学报,2018,38(3):0328004.
  Yang Y H, Yang F L, Lu L, et al. Research on interferometer photonic crystal fiber optic gyroscope technology[J]. Acta Optica Sinica, 2018, 38(3):0328004.
- [5] Cao Y W, Chen Y J, Zhou T, et al. The development of a new IFOG-based 3C rotational seismometer[J]. Sensors, 2021, 21(11): 3899.
- [6] Bhattacharyya S, Ahmed R N, Purkayastha B B, et al. Implementation of digital lock-in amplifier[J]. Journal of Physics: Conference Series, 2016, 759: 012096.
- [7] 吕呈辉.低成本开环光纤陀螺仪解调电路研究[D].杭州:浙江大学,2021:25-30.
  LüCH. Research of low-cost open-loop fiber optic gyro demodulation circuit[D]. Hangzhou: Zhejiang University, 2021:25-30.
- [8] Babu G H, Anuhya A V, Venkatram N. Digital signal processing scheme for open loop and closed loop IFOG using Matlab/Simulink[J]. Indian Journal of Science and Technology, 2016, 9(11): 09745645.
- [9] 江毅,张树桓.光纤激光干涉测量技术在EFPI传感器 信号解调中的研究进展[J].激光与光电子学进展, 2021,58(13):1306017.
  Jiang Y, Zhang S H. Research progress on fiber optical laser interferometry in signal demodulation of EFPI sensor[J]. Laser & Optoelectronics Progress, 2021,58 (13):1306017.
- [10] 梅泽,吕海飞,文晓艳,等.改进的椭圆拟合算法及振动传感相位解调[J].光学学报,2021,41(24):2412001.
  Mei Z,Lü H F, Wen X Y, et al. Modified ellipse fitting algorithm and phase demodulation of vibration sensing[J].
  Acta Optica Sinica, 2021, 41(24): 2412001.
- [11] 周柯江,阮晔锋,张大茂,等.光纤陀螺仪开环信号调制解调电路:CN101696882A[P].2010-04-21.
  Zhou K J, Ruan Y F, Zhang D M, et al. Open loop signal modulation and demodulation circuit of fiber optic gyroscope: CN101696882A[P].2010-04-21.
- [12] Wang Q, Yang C C, Wang X Y, et al. All-digital signalprocessing open-loop fiber-optic gyroscope with enlarged dynamic range[J]. Optics Letters, 2013, 38(24): 5422-5425.
- [13] 黄蔚.光纤陀螺数字解调技术研究[D].哈尔滨:哈尔滨 工程大学,2009:32-38.

Huang W. Research about digital demodulation of fiber optic gyroscope[D]. Harbin: Harbin Engineering University,

#### 第 59 卷 第 17 期/2022 年 9 月/激光与光电子学进展

# 研究论文

2009: 32-38.

- [14] 张敏杰,周柯江,王磊.采用数字相位跟踪的光纤陀螺解 调方案设计[J].激光与红外,2016,46(12):1536-1540.
  Zhang M J, Zhou K J, Wang L. Demodulation scheme for fiber-optic gyroscope based on digital phase tracking [J]. Laser & Infrared, 2016, 46(12):1536-1540.
- [15] 周柯江,胡科可,王涛.双折射波导偏振耦合的短相干 干涉测量[J].红外与激光工程,2014,43(9):2992-2995.
  Zhou K J, Hu K K, Wang T. Short coherent interferometry of polarize coupling in birefringent waveguide
  [J]. Infrared and Laser Engineering, 2014, 43(9): 2992-2995.
- [16] 严利平,周春宇,谢建东,等.基于卡尔曼滤波的PGC 解调非线性误差补偿方法[J].中国激光,2020,47(9):

0904002.

Yan L P, Zhou C Y, Xie J D, et al. Nonlinear error compensation method for PGC demodulation based on Kalman filtering[J]. Chinese Journal of Lasers, 2020, 47 (9): 0904002.

- [17] 张敏杰.开环Sagnac干涉仪的数字信号处理[D].杭州: 浙江大学, 2016: 16-20.
  Zhang M J. Digital signal processing for open-loop Sagnac interferometer[D]. Hangzhou: Zhejiang University, 2016: 16-20.
- [18] Bush I J, Cekorich A C. Demodulator and method useful for multiplexed optical sensors: US5903350[P]. 1999-05-11.
- [19] Cekorich A. Demodulator for interferometric sensors[J]. Proceedings of SPIE, 1999, 3860: 338-347.